AJEDREZ. PSICOLOGÍA. INFORMÁTICA.

jueves, 1 de enero de 2009

Análisis Matemático y Ajedrez

ANÁLISIS MATEMÁTICO Y AJEDREZ
MN David Rangel Tapia



En la construcción de las teorías matemáticas en la Grecia Antigua, muy temprano se específico una clase específica de problemas para la solución de los cuales, era necesario investigar los pasos al límite, los procesos infinitos, la continuidad. Algunos grupos de científicos antiguos buscan la salida de estas dificultades en la aplicación a la matemática de las ideas filosóficas atomicistas. El ejemplo más notable lo constituye Demócrito. Igualmente florecieron teorías totalmente contrarias a esta concepción. Tengamos en cuenta, por ejemplo, las paradojas de Zenón. Otro de los métodos más antiguos de este género es el método de exhaución, atribuido a Euxodo y aplicable al cálculo de áreas de figuras, volúmenes de cuerpos, longitud de curvas, búsqueda de subtangentes. Con el método se demuestra la unicidad del límite, pero no se soluciona el problema sobre la existencia de límite; aun así se considera la primera forma del método de límites. Los métodos infinitesimales en la Antigua Grecia, sirvieron de punto de partida para muchas investigaciones de los matemáticos de los siglos XVI y XVII. Particularmente se estudiaban los métodos de Arquímedes, en especial aquellos referidos al cálculo de volúmenes. El propio Leibniz escribió que "estudiando los trabajos de Arquímedes cesas de admirar los éxitos de los matemáticos actuales". El concepto de límite fue el primer paso, pero hubo que esperar hasta el siglo XVII, para que los métodos integrales y diferenciales y, en esencia, el análisis infinitesimal se diferenciaran como disciplinas estructuradas dentro de las matemáticas. Métodos Integrales: Al comienzo, estos métodos se elaboraban, acumulaban e independizaban en el transcurso de la resolución de problemas sobre el cálculo de volúmenes, áreas, centros de gravedad formándose como métodos de integración definida. El primero de los métodos publicado fue el de las operaciones directas con infinitesimales actuales. Apareció en el año 1615 en las obras de Kepler. Para la demostración matemática de las leyes de Kepler fue necesario utilizar las magnitudes infinitesimales. Sin embargo, fue en su obra "Nueva esteriometría de toneles de vino" donde expuso su método de utilización de magnitudes infinitesimales y los fundamentos para la sumación de éstos. Muchos científicos dedicaron sus trabajos al perfeccionamiento del lado operativo de esta empresa, y a la explicación racional de los conceptos que surgían sobre esto. La mayor fama la adquirió la geometría de los indivisibles, creada por Cavalieri, pensado como un método universal de la geometría. Este método fue creado para la determinación de las medidas de las figuras planas y cuerpos, los cuales se representaban como elementos compuestos de elementos de dimensión menor. Así, las figuras constan de segmentos de rectas paralelas y los cuerpos de planos paralelos. Sin embargo, este método era incapaz de medir longitudes de curvas, ya que los correspondientes indivisibles (los puntos) eran adimensionales. Pese a ello, la integración definida en forma de cuadraturas geométricas, adquirió fama en la primera mitad del siglo XVII, debido a la gran cantidad de problemas que podían resolver. Las ideas que incluyen elementos de integración definida abarcaban hacia los años 60 del siglo XVII amplias clases de funciones algebraicas y trigonométricas. Era necesario sólo un impulso, la consideración total de los métodos desde un punto de vista único, para cambiar radicalmente toda la problemática de integración y crear el cálculo integral. Métodos Diferenciales: En las matemáticas del siglo XVII junto a los métodos integrales, se formaron también los métodos diferenciales, dando sus primeros pasos en la resolución de problemas. Tales problemas eran en aquella época de tres tipos: determinación de las tangentes a las curvas, búsqueda de máximos y mínimos de funciones y búsqueda de las condiciones de existencia de raíces múltiples de las ecuaciones algebraicas. En el transcurso de este siglo los problemas diferenciales, aun se resolvían por los métodos más diversos. Veamos algunos casos. Ya en la escuela de Galileo, para la búsqueda de tangentes y normales a las curvas, se aplicaban simultáneamente los métodos cinemáticos, considerando diferentes lanzamientos y movimientos complejos, determinando la tangente en cualquier punto de la trayectoria. Torricelli, admirador de Galileo, estudió las trayectorias parabólicas que siguen los proyectiles disparados desde un punto fijo con velocidad inicial constante, pero con ángulos de elevación sobre la horizontal variables, descubriendo que la envolvente de todas esas parábolas era otra parábola, la llamada parábola de seguridad. Al pasar de la ecuación de la distancia a la de la velocidad, ambas en función del tiempo, y recíprocamente, se dieron cuenta del carácter inverso que presentan los problemas de cuadraturas en determinación de tangentes. Sin embargo, su muerte repentina a los 39 años, truncó lo que podía haber sido la invención del cálculo infinitesimal. La exposición sistemática del método y sus aplicaciones más importantes las dio Roberval en 1640. La acumulación de los métodos del cálculo diferencial adquirió su forma más clara en Fermat, quien resolvió el problema de la determinación de los valores extremales de una función f(x). También está próximo al cálculo diferencial su método de búsqueda de las tangentes a las curvas algebraicas, si bien las funciones estudiadas eran polinómicas. Hacia mediados del siglo XVII se acumuló una reserva lo suficientemente grande de recursos de resolución de problemas, actualmente resolubles mediante le diferenciación. Sin embargo, no habían sido aun desarrollados. Análisis Infinitesimal: La última etapa del desarrollo del análisis infinitesimal, fue el establecimiento de la relación e inversibilidad mutua entre las investigaciones diferenciales e integrales, y a partir de aquí la formación del cálculo diferencial e integral. Este último surgió como una parte independiente de las matemáticas, casi simultáneamente en dos formas diferentes: en la forma de teoría de fluxiones de Newton y bajo la forma del cálculo de diferenciales de G.W. Leibniz. Teoría de fluxiones: En el método de fluxiones se estudian las magnitudes variables, introducidas como abstracción de las diferentes formas del movimiento mecánico continuo. Estas magnitudes variables se consideran cantidades que van fluyendo o "fluentes". Después se introducen las velocidades de la corriente de los fluentes, esto es, las derivadas con relación al tiempo. Ellas se denominan fluxiones, que a su vez son también variables y poseen también sus fluxiones y así sucesivamente. Los símbolos de la primera, segunda... fluxiones, si el fluente se designa por y serán Para el cálculo de las velocidades instantáneas, es decir, de las fluxiones, se exigían variaciones infinitesimales de los fluentes, denominados por Newton momentos. En esencia, el momento del fluente es su diferencial. Con esta teoría se resuelven dos problemas fundamentales:
- determinación de la velocidad de movimiento en un momento de tiempo dado, según un camino dado. De otro modo: determinación de la relación entre las fluxiones dada la relación entre los fluentes.
- dada la velocidad de movimiento determinar el camino recorrido en un tiempo dado. En términos matemáticos, determinar la relación entre los fluentes dada la relación entre las fluxiones.
El primer problema, llamado problema directo, representa el problema de la diferenciación implícita de funciones y obtención de la ecuación diferencial, que expresa las leyes fundamentales de la naturaleza. El segundo, llamado problema inverso, es el problema de la integración de las ecuaciones diferenciales.
Cálculo de los diferenciales: en el plano puramente matemático el cálculo de Leibniz se formó bajo las siguientes premisas:
a) Problemas de sumación de series y la utilización de los sistemas de diferencias finitas.
b) Resolución de problemas sobre tangentes, el triángulo de Pascal y el paso gradual de las relaciones entre elementos finitos a arbitrarios y después infinitesimales.
c) Problemas inversos de tangentes, sumación de diferencias infinitamente pequeñas, descubrimiento de la inversibilidad mutua entre los problemas diferenciales e integrales.
Él llegó a la idea sobre el símbolo "d" (abreviatura de la palabra diferencia" para la designación de diferencias infinitesimales. Igualmente representó la integral como suma de "todas" las ordenadas, que son una cantidad infinita y lo escribió con el símbolo omny. Más tarde incorporó el símbolo inicial de la palabra Summa. Posteriormente aclaró la necesidad de perfeccionar el símbolo integral, incluyendo en él, el símbolo de diferencial del argumento.
Se formularon reglas de diferenciación de las magnitudes de las magnitudes constantes, de la suma, diferencia, producto, cociente, potencia y raíz de funciones. Los diferenciales se interpretaron inicialmente como magnitudes proporcionales al incremento instantáneo de la magnitud. Verdaderamente, más tarde, los diferenciales se definieron como diferencias infinitesimales. Los estudios sobre cálculo diferencial e integral se publicaron en 1684 y 1686 respectivamente.
En trabajos posteriores de Leibniz se abarca, en esencia, todas las partes del cálculo diferencial e integral obteniendo, por ejemplo, la regla de diferenciación de la función exponencial general, y la fórmula de diferenciación múltiple del producto. Generalizó también el concepto de diferencial al caso de exponente fraccionario y negativo.
Mediante el nuevo cálculo los matemáticos de finales de siglo y comienzos del XVIII lograron resolver un número, que crecía rápidamente, de importantes problemas difíciles y prácticos. Estos éxitos prácticos y la elaboración del cálculo, alcanzaron tal nivel, que a finales de siglo (1696), apareció el primer manual de cálculo diferencial y sus aplicaciones a la geometría; "Análisis Infinitesimal" de G.F. L'Hopital.
Un extenso lugar en las obras sobre historia de las matemáticas de esta época, estuvo marcado por la disputa en la prioridad del descubrimiento del cálculo diferencial e integral, por parte de Newton o Leibniz; descubrimiento que, como se ha demostrado posteriormente tuvo lugar de forma simultánea e independiente. Ya en el siglo XVIII la elaboración científica de los problemas matemáticos se concentró casi exclusivamente en los países de Europa. Junto a la formación de los fundamentos del análisis matemático -el cálculo diferencial e integral- hacia comienzos de siglo surgieron resultados también en sus ramas superiores: la teoría de ecuaciones diferenciales y el cálculo de variaciones. La teoría de las ecuaciones diferenciales ordinarias obtuvo un desarrollo sistemático, comenzando con los trabajos de Jo. Bernoulli y J. Ricatti. Durante el siglo XVIII el problema de la creación de la teoría de funciones se convirtió en el problema preliminar del análisis infinitesimal. El concepto de función tenía dos aspectos: la función como correspondencia y la función como expresión analítica. Los éxitos prácticos del análisis infinitesimal, impulsaron a los científicos a poner más atención a este tratamiento del concepto de función, el cual permitía operar con funciones concretas. Fue en el transcurso de los años 30 y 40, en lo fundamental gracias a Euler, cuando se elaboró, sistematizó y clasificó la teoría de las funciones elementales analíticas. La experiencia señaló a los matemáticos que todas las funciones conocidas, eran desarrollables mediante series de potencias. Igualmente se crearon las premisas para la teoría de funciones de variable compleja. Uno de los rasgos más característicos del análisis infinitesimal durante este siglo XVIII era la poca claridad de sus conceptos primarios, la imposibilidad de explicar racionalmente la validez de las operaciones introducidas. Las ideas de los creadores del análisis en esta materia no se distinguían ni por su constancia ni por su determinación. Tanto Newton como Leibniz llevaron a cabo un conjunto de intentos de explicar sus cálculos, sin lograr éxito. Entre los numerosos esfuerzos por encontrar una fundamentación rigurosa al análisis infinitesimal, destacan los de Euler y D'Alembert. Según Euler, el concepto fundamental no es el de diferencial, sino el de derivada; en lo que se refiere a los infinitesimales o diferenciales, ellos son simplemente ceros exactos. Pero esta teoría de Euler no pudo ser reconocida como satisfactoria pues se limitaba a enmascarar los pasos reales al límite, los cuales prácticamente se llevaban a cabo en la diferenciación de funciones. D'Alembert por su parte, ponía objeciones a la teoría de los ceros de Euler y sostenía que la notación de los diferenciales no es más que una manera vaga de hablar, que depende para su justificación del lenguaje de los límites. Sin embargo, la teoría de los límites del siglo XVIII, no obtuvo el reconocimiento de la mayoría de sus contemporáneos. El trabajo más serio que reveló la posibilidad total del cálculo diferencial algebraico y que determinó su destino fue el gran trabajo de Lagrange, "Teoría de las funciones analíticas". Demostró que toda función y=f(x+h) puede ser desarrollada en serie de potencias en la forma f(x+h)=f(x)+ph+qh2+rh3... excepto en determinados valores del argumento. Las series de potencias fueron pues, utilizadas para la aproximación de cualquier función por polinomios. Además dedujo la fórmula del resto y el teorema del valor medio. Los coeficientes del desarrollo polinómico fueron definidos por Lagrange como derivadas sucesivas. Pero siguió sin resolver el concepto de límite y las operaciones con series carecían de fundamento, al realizarse sin el estudio de la convergencia de la serie. Semejantes dificultades existieron durante mucho tiempo, hasta que a finales del siglo XIX fue creado el "aparato (, (" de la teoría de límites. La riqueza real del análisis acumulada durante el siglo XVIII es tremenda. Veamos algunas de sus particularidades. Cálculo Diferencial: el cálculo diferencial conservó una estrecha relación con el cálculo de diferencias finitas, originado en los trabajos de Fermat, Barrow, Wallis y Newton entre otros. Así en 1711 Newton introdujo la fórmula de interpolación de diferencias finitas de una función f(x); fórmula extendida por Taylor al caso de infinitos términos bajo ciertas restricciones, utilizando de forma paralela el cálculo diferencial y el cálculo en diferencias finitas. El aparato fundamental del cálculo diferencial era el desarrollo de funciones en series de potencias, especialmente a partir del teorema de Taylor, desarrollándose casi todas las funciones conocidas por los matemáticos de la época. Pero pronto surgió el problema de la convergencia de la serie, que se resolvió en parte con la introducción de términos residuales, así como con la transformación de series en otras que fuesen convergentes. Junto a las series de potencias se incluyeron nuevos tipos de desarrollos de funciones, como son los desarrollos en series asintóticas introducidos por Stirling y Euler. La acumulación de resultados del cálculo diferencial transcurrió rápidamente, acumulando casi todos los resultados que caracterizan su estructura actual. Por ejemplo Euler demostró que en df(x, y)=Pdx+Qdy las derivadas parciales deben satisfacer la condición
Cálculo Integral: los logros en este terreno pertenecieron inicialmente a J.Bernoulli, quien escribió el primer curso sistemático de cálculo integral en 1742. Sin embargo, fue Euler quien llevó la integración hasta sus últimas consecuencias, de tal forma que los métodos de integración indefinida alcanzaron prácticamente su nivel actual. El cálculo de integrales de tipos especiales ya a comienzos de siglo, conllevó el descubrimiento de una serie de resultados de la teoría de las funciones especiales. Entre ellas citaremos las funciones gamma y beta, el logaritmo integral o las funciones elípticas. También se desarrolló el método de las sustituciones complejas. Ecuaciones Diferenciales: la teoría de las ecuaciones diferenciales ordinarias se había desarrollado ya considerablemente antes de esta época, pero el problema más difícil de la resolución de ecuaciones en derivadas parciales era entonces un campo abierto para los pioneros. El problema de la integración de ecuaciones diferenciales, en su inicio, se presentaba como parte de un problema más general: el problema inverso del análisis infinitesimal. Además cada una de las ecuaciones estaba justificada por la existencia de un problema concreto, no existiendo a principios de siglo una teoría general, con lo que la vía utilizada, fue la de resolver clases de ecuaciones lo más amplias posibles. Los primeros intentos de resolución se centraron en las ecuaciones diferenciales lineales, advirtiéndose resultados notables ya en los años 20 con los trabajos de Ricatti, Golbach, Bernoulli y Leibniz. En el año 1743 Euler publicó el método de resolución de una ecuación diferencial lineal homogéneo de cualquier orden, mediante la sustitución y=ekx o similares. D'Alembert encontró en 1766 que la solución general de una ecuación no homogénea lineal, es igual a la suma de cierta solución particular y la solución general de la correspondiente ecuación homogénea. Junto a las ecuaciones diferenciales ordinarias, fueron encontradas las soluciones de ciertas ecuaciones en derivadas parciales, llevadas a cabo especialmente por Euler y D'Alembert. Así, las ecuaciones diferenciales en derivadas parciales de segundo orden surgieron preferentemente en el curso de resolución de problemas físicos, entre los que cabe señalar el problema de la cuerda, que conduce a la ecuación: resuelta por Euler. Fue a finales de los 70 cuando Lagrange estableció la forma de obtener soluciones singulares, así como la interpretación de las mismas como la familia de envolventes de las curvas integrales. El estudio de estas familias de curvas integrales y la solución de problemas sobre la búsqueda de trayectorias envolventes e isogonales dio lugar a la aparición de una nueva rama dentro de la geometría: la geometría diferencial. Cálculo de Variaciones: el cálculo de variaciones surgido en este siglo, recibió en los trabajos de Euler y Lagrange la forma de una teoría matemática rigurosa, posibilitando la resolución de un gran número de problemas de carácter práctico, referidos a la determinación de los extremos de las funciones y que no admitían resolución con los medios del recientemente aparecido análisis infinitesimal. Entre estos problemas citaremos el de la braquistócrona, el problema isoperimétrico o el de las líneas geodésicas sobre las superficies. El primer método general de resolución de problemas de variaciones, fue elaborado en una serie de trabajos de Euler durante los años 1726 a 1744, presentando la primera formulación general de un problema de variaciones unidimensionales en 1735. Cuatro años después, este método fue generalizado, publicando ya en 1744, el que podríamos considerar como primer libro de la historia sobre cálculo de variaciones. En el libro de Euler se citan más de 60 ejemplos que ilustran las posibilidades del nuevo método. En ellos se demuestra el valor práctico del cálculo y se establece su estrecha relación con la mecánica y la física. El objetivo de este método general era la búsqueda de líneas curvas para las cuales cierta magnitud prefijable, alcanza su valor máximo o mínimo. Pese a la practicidad del método, éste adolecía de cierta falta de rigor sobre todo en cuestiones relacionadas con los pasos al límite. La situación cambió como consecuencia de la puesta en común de ideas por parte de Euler y Lagrange, al comunicar éste último, el método general analítico de cálculo de la variación de la integral, mediante la integración por partes. El análisis matemático, hacia el siglo XIX se convirtió en un sistema de disciplinas ramificado y siguió ocupando un lugar central en las matemáticas. El flujo inagotable de nuevos resultados teóricos y el campo de aplicaciones el cual se amplía continuamente, condicionaron el que en la estructura general de las matemáticas ocuparan un lugar especial, principalmente, las disciplinas analíticas. Las ecuaciones diferenciales se convirtieron en el medio operativo fundamental del análisis. El aparato del análisis matemático en este siglo era un conjunto de procedimientos y métodos de solución de numerosos problemas que crecía rápidamente. Todos estos métodos aun podían dividirse en tres grandes grupos, constituidos en el cálculo diferencial, el cálculo integral y la teoría de ecuaciones diferenciales que rápidamente se independizaba de este último. Los contornos de la teoría en formación de funciones de variable compleja, la teoría de las funciones especiales se delineaban aun lentamente. Teoría de Límites: Uno de los lugares centrales del análisis lo ocupa el concepto de límite. Sobre él se apoya todo el aparato de las demostraciones infinitesimales. Los matemáticos del siglo XVIII probaron un conjunto de procedimientos para fundamentar el análisis infinitesimal, pero el insatisfactorio de casi todos estos métodos se hizo rápidamente evidente. A finales del siglo XVIII y principios del XIX era más que evidente la necesidad de construcción de la teoría de límites como base del análisis matemático y una reconstrucción radical de este último. Este proceso de reconstrucción se reveló claramente en los años veinte de este siglo, sobre todo en los trabajos de Agustín-Luis Cauchy y en sus famosas conferencias, las cuales fueron publicadas en tres libros: "Curso de análisis" (1821); "Resumen de conferencias sobre el cálculo de infinitesimales" (1823) y "Conferencias sobre aplicaciones del análisis a la geometría" (dos tomos 1826,1828). Estos libros tienen una importancia especial, porque en ellos por primera vez, el análisis matemático se construye sucesivamente sobre la teoría de límites. El primero de los libros está dedicado al estudio de las funciones elementales, tanto de variable real como compleja, incluyendo el estudio de las series infinitas. Asimismo se introduce por primera vez, una magnitud infinitesimal como una variable cuyo límite es igual a cero. Expuso también la cuestión de la convergencia de las series, así como sus criterios de convergencia. En el segundo de los libros se expone el cálculo diferencial e integral de función de variable real, destacando la aparición de una demostración analítica de existencia de integral definida de una función continua.

No hay comentarios: